CHEMICAL BEAM EPITAXY LASER-ASSISTED
Sybilla equipment

Giacomo Benvenuti, PhD.

E. Wagner (PhD),
S.C. Sandu (PhD),
W. Maudez (PhD),
S. Bagdzevicius (PhD),
R. Rani (PhD)

19 November 2021 EPIDOX Conference
SUMMARY

Why we need a New Tool?

CBE-CBVD & Sybilla Equipment

Combinatorial Growth

Additive Growth

Some Functional Materials

Conclusion & Outlook
GLOBAL CONTEXT & 3D-OXIDES
Oxide thin films offer unique opportunities:

- Replace scarce or toxic elements
- Multi-functional materials for new devices (More than Moore)

However, they are far more complex:

- Huge amount of combinations
- Higher temperatures for epitaxy and crystals quality
- Strong material properties variations for non perfect crystals
- Complex Figures of Merit for multi-functional materials
Chemical Beam Epitaxy Laser-Assisted (CBE-LA)

Sybilla Equipment
CBE STRENGTHS & WEAKNESSES

CHEMICAL PRECURSORS IN MOLECULAR VACUUM

CBE VS. PVD TECHNIQUES

- Chemical selectivity (2 different regimes)
- Lower process temperatures
- Less sensitive to gas contamination (reduced getter effects)
- Small gas sources for better control

- Chemistry
- Complex multi-parameter process

CBE VS. CVD TECHNIQUES

MOLECULAR Vacuum

- No gas phase reaction
- No boundary layers with slow diffusive processes
- Line of sight & easy impinging rates modeling
- UHV characterization techniques
- Beam-assisted deposition & use of very reactive species

- Reduced number of available precursors
## Available Chemical Precursors

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>Ga</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
<td>In</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>*</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
<td>Tl</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>*</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
<td>Bh</td>
<td>Hs</td>
<td>Mt</td>
<td>Ds</td>
<td>Rg</td>
<td>Uub</td>
<td>Uut</td>
</tr>
</tbody>
</table>

- Mastered in 3D-oxides
- Under investigation in house
- Reported in literature
- Radioactive, toxic or unstable
- Semiconductors in literature
- Oxygen plasma

**Context & 3D-Oxides**  
**CBE-CBVD & Sybilla Equipment**  
**Combinatorial Growth**  
**Additive growth**  
**Some Applications**
Sybilla for 450 mm substrates set-up

Single wafer Sybilla-450 mm
Merging CVD and MBE assets

Windows for assisted deposition or characterization techniques

Context &3D-Oxides
CBE-CBVD & Sybilla Equipment
Combinatorial Growth

Additive growth
Some Applications
SIDE AND TOP VIEWS OF SYBILLA EQUIPMENT

Radiative substrate heater
Substrate
Stencil Mask
Punctual sources with Knudsen effusion
Pre-chamber quarter
Precursor A
Precursor B
Precursor C
Precursor D
Precursor E

Context & 3D-Oxides
CBE-CBVD & Sybilla Equipment
Combinatorial Growth
Additive growth
Some Applications
## SYBILLA (CBE-LA) PERFORMANCES

### Agile and Disruptive R&D, Reliable and Cost Efficient Production

| **Growth rates:** | 5 nm h\(^{-1}\) up to 20 µm h\(^{-1}\) |
| **Layer Quality:** | Epitaxial to highly porous thin films |
| **Substrate size:** | Scalable to any size |
| **Number of elements:** | Actually 1-5, but scalable to 6 or even more |

| **R&D results uptake:** | Very fast as the same equipment is used |
| **Process modification:** | Very fast: process is not geometry dependent |

| **Precursors use:** | From 10% up to as high as 65% |
| **Equipment life-time:** | Extensive (different materials/applications) |
| **Costs of ownership:** | Possibly lower than few € / cm\(^2\) |

**Combinatorial production:** Monolithic integration of ≠ functionalities
COMBINATORIAL
PreCURSOR FLOW GRADIENTS

Wagner et al. (2016) ACS Combinatorial Science, 18(3) 154

1 active quarter - Flow ratio: 6
2 active quarters - Flow ratio: 4.6
3 active quarters - Flow ratio: 3.3
4 active quarters - Flow ratio: 2.2
5 active quarters - Flow ratio: 1.5
6 active quarters - Homogeneous +/-2%

Context & 3D-Oxides
CBE-CBVD & Sybilla Equipment
Combinatorial Growth
Additive growth
Some Applications
**Very High Thickness Uniformity 18” Substrates**

**Context & 3D-Oxides**

**CBE-CBVD & Sybilla Equipment**

**Combinatorial Growth**

**Additive growth**

**Some Applications**

+/- 1.5% uniformity

+/- 0.5% uniformity

<table>
<thead>
<tr>
<th></th>
<th>All points</th>
<th>Without extrema</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>299.23</td>
<td>299.66</td>
</tr>
<tr>
<td>max</td>
<td>302.34</td>
<td>302.34</td>
</tr>
<tr>
<td>average</td>
<td>300.77</td>
<td>300.85</td>
</tr>
<tr>
<td>stdv</td>
<td>0.71127994</td>
<td>0.6668543</td>
</tr>
<tr>
<td>Homogeneity</td>
<td>1.03%</td>
<td>0.89%</td>
</tr>
</tbody>
</table>
Wagner et al. (2016) ACS Combinatorial Science, 18(3) 154

**Combining with 3 Elements**

**Simulation vs Experimental Data**

Material Properties vs Composition

Wagner et al. (2016) ACS Combinatorial Science, 18(3) 154

**Combining with 3 Elements**

**Simulation vs Experimental Data**

Context & 3D-Oxides  CBE-CBVD & Sybilla Equipment  Combinatorial Growth  Additive growth  Some Applications
COMBINATORIAL IN-SITU SPECTRAL REFLECTOMETRY

**a)**
- **Flow**
- **Point 1**
- **Point 2**
- **Point 3**
- **Point 4**
- **Point 5**
- **Point 6**
- **Point 7**
- **Point 8**
- **Point 9**
- **Point 10**
- **Point 11**
- **Point 12**
- **Point 13**
- **Point 14**
- **Point 15**
- **Point 16**
- **Point 17**
- **Point 18**
- **Point 19**
- **Point 20**
- **Point 21**

**b)**
- **Deposition**
- **END**

**c)**
- **Experimental thickness**
- **Calculated model**

**Graphs and Data:***
- **Thickness (nm)**
- **Time (s)**

**Text:**
- **Mass Transport Limited Regime conditions**

**Contact:**
- PhD Giacomo BENVENUTI
- +33-(0)7 777 54 397
- giacomo.benvenuti@3d-oxides.com

**Context:**
- &3D-Oxides
- CBE-CBVD & Sybilla Equipment
- **Combinatorial Growth**

**Additive growth**
- Some Applications
MATERIAL PROPERTIES VS THICKNESS

3D-PYRAMID LIKE STRUCTURE

ROUGHNESS INCREASING WITH THICKNESS FOR COLUMNAR GROWN TiO₂ ANATASE
ADDITIVE GROWTH
PATTERNED SUBSTATES / STENCIL MASKS
Deposition on patterned substrates

- 1st precursor:
  - Deposit
  - Trench profile

- 2nd precursor:
  - Flow
  - Deposit

- Two precursors:
  - Flow
  - Trench profile
  - Mixed deposit

Additive growth
**Chemical Patterning (Separated Elements)**

EDX mapping

Optical microscope picture of the layer 80 nm for TiO$_2$,
40 nm for Nb$_2$O$_5$

Context & 3D-Oxides

CBE-CBVD & Sybilla Equipment

Combinatorial Growth

Additive growth

Some Applications
CHEMICAL PATTERNING (SUPERPOSED ELEMENTS)

Source 1  Source 2

Mask

Substrate

Deposit 1  Deposit 2

Deposit sum

Context & 3D-Oxides  CBE-CBVD & Sybilla Equipment  Combinatorial Growth  Additive growth  Some Applications
Variable electrical conductivity. Most functional properties can be modulated and patterned.
ADDITIVE GROWTH
CBE-LASER-ASSISTED

3D-OXIDES
MULTI-FUNCTIONAL THIN FILMS
ENERGY Source | Thin Film Colour | TiO$_2$ layer (thickness nm)
--- | --- | ---
Thermal deposition | Blue | 70.0
Fluence 1 | Yellow | 112.7
Fluence 2 | Blue | 190.3
Fluence 3 | Red | 360.6
Fluence 4 | Blue | 402.1

DEPOSITION / ABLATION / ETCHING IS LIMITED TO THE IRRADIATED AREA

Low Temperature 330°C

Laser gradient added energy

Mass Transport Limited Growth

GR Enhancement x6

Chemical Reaction Limited Growth
Selective modification of TiO$_2$ thin films properties

Refractive index fine tuning

BandGap shifting (Tauc Model)

Film densification
Laser 3D-Patterning (Chemical Composition)

In-situ reflectivity

$\text{Ti}_x\text{Si}_{1-x}\text{O}_2$

330°C

1 Hz

370°C

2 Hz

400°C

5 Hz

450°C

10 Hz

$0.2 \, \mu\text{m}$

330°C

1 Hz

370°C

2 Hz

400°C

5 Hz

450°C

10 Hz

$\text{THERMAL GROWTH}$

$\text{THERMAL GROWTH + LASER}$

Context & 3D-Oxides

CBE-CBVD & Sybilla Equipment

Combinatorial Growth

Additive growth

Some Applications

PhD Giacomo Benvenuti

+33 (0) 7 777 54 397

giacomo.benvenuti@3d-oxides.com
COMBINATORIAL & ADDITIVE GROWTH

Combinatorial structures obtained via a stencil mask

Top-down patterning

Bottom-up patterning

Some Applications

Additive growth
FUNCTIONAL MATERIALS
LiNbO$_3$

Combinatorial Chemical Beam Epitaxy of Lithium Niobate Thin Films on Sapphire
DOI:10.1149/1.3519843

Single orientation 006/0012
Rocking curves: FWHM 0,03°
Roughness RMS 1,39 nm
Raman: ok
Refractive index: 2,26 < n < 2,31
EPITAXIAL BaTiO$_3$ ON Si (EPFL AND IBM)

Reference: Low Temperature Epitaxial Barium Titanate Thin Film Growth in High Vacuum CVD; M. Reinke et als; Adv. Mater. Interfaces 2017, 1700116 DOI: 10.1002/admi.201700116
CONCLUSION & OUTLOOK
Top level properties on many different materials:
LiNbO$_3$, BaTiO$_3$, SrTiO$_3$, TiO$_2$, Hf$_{(1-x-y)}$Ti$_x$Zr$_y$O$_2$, Nb$_2$O$_5$, Ta$_2$O$_5$, Al$_2$O$_3$, ZnO, Vo$_x$, etc...

Upscalable to production
1. Very high control accuracy on process
2. Lower thermal budget (CMOS compatible)
3. Large substrates (mass production)
4. More elaborated architectures for better devices
A DISRUPTIVE TOOL FOR NEW OXIDE THIN FILMS DEVICES

FAST COMBINATORIAL

PROCESS CONDITIONS

CHEMICAL COMPOSITION

3D-GEOMETRY

INTERFACES

NEW MATERIALS

NEW ARCHITECTURES

SINGLE-STEP PATTERNING

SELF-ASSEMBLY

PATTERNED SUBSTRATES

Stencil Masks

Beam-Assisted

DISRUPTIVE DEVICES

FAST TECHNOLOGICAL APPROACH ADDRESSING SIMULTANEOUSLY SEVERAL MARKETS
ACKNOWLEDGEMENTS

Bruno Masenelli INL
Christian Grillet INL
Marina Raevskaia (Raman, ellipso, AFM...) INL
Romain Bachelet (XRD) INL
Anna Lucia Pellegrino Uni Catania
Graziella Malandrino Uni Catania
Denis Remiens UPHF / Uni Valenciennes
Julien Carlier UPHF / Uni Valenciennes

COFUND ECLAUSion: "Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (MSCA) (ECLAUSion, grant agreement No 801512)"
THANK YOU FOR YOUR ATTENTION

Phone : +33-(0)7 777 54 397
giacomo.benvenuti@3d-oxides.com