

Antiferroelectric like state in BiFeO₃/LaFeO₃ superlattices

B. Carcan¹, J. Belhadi,, M. El Marssi¹, F. Le Marrec¹, L. Dupont^{2,3}, C. Davoisne², J. Wolfman⁴, D. C. Arnold⁵, H. Bouyanfif¹

¹LPMC UR2081, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France

²LRCS UMR7314, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France

³Plateforme de microscopie électronique, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France

⁴GREMAN UMR7347, Université de Tours François Rabelais, 20 Avenue Monge, 37200 Tours, France

⁵School of Physical Sciences, University of Kent, Canterbury, Kent, CT1 7NH, UK

- 1. Introduction
- 2. Structural investigation and phase transition of (001) oriented BFO/LFO superlattices
- 3. Room temperature investigation of (111) oriented BFO/LFO superlattices
- 4. Conclusions

D Sando et al 2014 J. Phys.: Condens. Matter 26 4732

BiFeO₃ and LaFeO₃

BFO_{(1-x)/}/LFO_{x/} superlattices grown on STO buffered with LPMC

UNIVERSITÉ de Picardie

ules Verne

LSCO

Carcan et al., Advanced Materials Interfaces 4 (11) 2016

UNIVERSITÉ BFO_{(1-x)/}/LFO_{x/} superlattices grown on STO

(204) Reciprocal space mapping

- Same results for (024) reciprocal space mapping
- (113) reciprocal space mapping: a single reflection
- **X** Exclusion of the monoclinic or rhombohedral structure

LPM

In plane relaxation of the

> Similar structural evolution:

2 nodes for the rich BFO superlattices ($x \le 0,65$)

1 node for the rich LFO superlattices ($x \ge 0,7$)

- **D** presence PbZrO₃ like reflections $\frac{1}{4}(011)$
- □ Presence of Pnma like reflections ½(010)
- no PbZrO₃ like reflections ¼(011)
 Presence of Pnma like reflections ½(010) 10

Raman spectroscopy

UNIVERSITÉ de Picardie

Average lattice parameter versus temperature (on LSCO/STO(001))

Similar results for superlattices on STO/MgO(001)

Structural transition from an antipolar phase to a non polar phase (Pnma)

13

Conclusion : Phase diagram

Emergence of an antipolar structure in BFO/LFO superlattices

Interlayer strain and mismatch of oxygen octahedral rotation/tilt system at interfaces (a-a-a- vs a-a-c⁰)

UNIVERSITÉ $BFO_{(1-x)\Lambda}/LFO_{x\Lambda}$ superlattices grown on (111) STO buffered with SRO ules Verng

de Picardie

Influence of the crystallographic orientation ((001) vs (111)) on the phase stability

BFO_(1-x)/LFO_x superlattices grown on (111) STO buffered with SRO

(204) and (113) reciprocal space mapping

BFO rich superlattices: rbombohedral or monoclinic structure?

LFO rich superlattices: orthorhombic structure

Need to check with TEM and explore the effect of temperature

$BFO_{(1-x)\wedge}/LFO_{x\wedge}$ superlattices grown on (111) STO : Raman spectroscopy

UNIVERSITÉ

uler Verne

de Picardie

Spectral signature of rhombohedral structure for BFO rich superlattices (phonons at frequencies very close to those observed in R3c thin films)

LPMC UNIVERSITÉ $BFO_{(1-x)\Lambda}/LFO_{x\Lambda}$ superlattices grown on (111) STO buffered with SRO ules Verng

de Picardie

BFO rich superlattices are ferroelectric : P-E loops and switchable photovoltaic properties

Not observed in LFO rich superlattices and (001) oriented superlattices

La ³⁺(1,36 Å)

_____Bi ³⁺(1,36 Å> Sm³⁺ (1,28 Å)> Gd ³⁺(1,27Å)>Dy³⁺(1,24 Å))>Nd³⁺ (1,15 Å)

Increase of interlayer strain effect with ReFeO₃:

Dichotomy strain effects vs tilt/ rotation mismatch at heterointerfaces ?

Complete the (111) phase diagram and explore other orientations such as (110)

LPMC

Growth by Pulsed Laser deposition

Pulsed laser deposition

BiFe_{0.95}Mn_{0.05}O₃(280nm)/SrRuO₃(20nm)/LaAlO₃(001)

Epitaxial and single phase thin film

Rhombohedral R3c structure

X-ray diffraction

LPMC

Structure anti polaire et parois de domaines

de Picardie

when Verne

x=0,45 sur MgO

JAPANESE JOURNAL OF APPLIED PHYSICS Vol. 21, No. 2, February, 1982 pp. 291–298

Structure en domaine à 90° (à gauche)

.PMC

Etude en température par DRX

UNIVERSITÉ de Picardie

ules Verne

.PMC