

Karine Dumesnil

CINIS

https://spin.ijl.cnrs.fr/

Rich playground of oxides

Growth of oxide thin films

R. Engel-Herbert Molecular Bean Epitaxy: from research to mass production, Elsevier (2013)

Outline

- The choice of MBE
- Specificities related to oxide-MBE
 Oxidizing gas
 - Stœchiometry / RHEED
- Examples of ALL-MBE grown oxide systems
- The ozone-MBE system @IJL
- Towards multiferroicity in RE Vanadates superlattices

Outline

- The choice of MBE
- Specificities related to oxide-MBE
 Oxidizing gas
 Stœchiometry / RHEED
- Examples of ALL-MBE grown oxide systems
- The ozone-MBE system @IJL
- Towards multiferroicity in RE Vanadates superlattices

The choice of MBE

Well defined atomic/molecular beams (evaporation/sublimation) Interaction with a cristalline surface to build an epitaxial film

Base pressure in 10⁻¹¹ Torr range

Mean free path \approx characteristic distances

Clean environment No highly energetic species (thermal energy) In-situ control of atomic arrangement (RHEED)

Growth of metastable phases/orders (strain, interface energy)

 $\lambda = \frac{k_B T}{\sqrt{2}\pi P D^2}$

Ultimate control of the stacking (low rates, shutters) Atomic Layer by Layer (ALL) deposition, digital doping

Specificities related to oxide growth

Oxidizing gas

- Specific pumping

Compatibility with materials (cells, sample holders, filament...) No filament...) Stability of sources (distance, differential pumping, collimator, reductor...)

Thermodynamic of oxide growth

Low mobility high deposition temperature to achieve crystal quality

Low vapour pressure (except Bi, Pb)

no adsorption controlled growth

more strict conditions (stoechioemetry, stability)

Choice of the oxidizing gas

Efficient oxidation High pressure Low temperature

Large mean free path/mobility

Low pressure High temperature

Deposition rates/ stoechiometry

Quartz Electrodes (Au) Sensitive coating Analyte molecules Δm Δf Tooling factors Pre-calibration

Quartz Microbalance

Atomic Absorption

Accuracy better than 1% Calibration via QCM Feedback during deposition

RHEED oscillations

co-deposition

Shuttered/ALL deposition

RHEED oscillations - codeposition

Adjust metal fluxes (T1/T2) **Relative calibration**

RHEED oscillations – shuttered deposition

Adjust metal fluxes **(T1 and T2)** Adjust atomic doses **(t₁ and t₂)** Absolute calibration

Determination of doses Increased interface quality Reduced growth temperature

Y. Horikoshi et al., Jap. J. of Appl. Phys. (1988) Y. Horikoshi et al., Semicond. Sci. Technol. 8, 1032 (1993)

RHEED oscillations – shuttered deposition / ALL for SrTiO₃

Outline

- The choice of MBE
- Specificities related to oxide-MBE
 - Oxidizing gas Stœchiometry / RHEED
- Examples of ALL-MBE grown oxide systems
- The ozone-MBE system @IJL
- Our work on RE vanadates films and superlattices

$FM \rightarrow AFM$ in manganites - $La_{1-x}Sr_{x}MnO_{3}$

INSTITUT JEAN LAMOUR

T.S Santos et al., Phys. Rev. B (2009)

Interface superconductivity by 2D doping – La_{2-x}Sr_xCuO₄

Interface superconductivity – La_{2-x}Sr_xCuO₄

Confined superconductivity (2D), in the proximity of each SrO layer Tuning of number, position, relative distance ... of active layers

Layer-dependent superconductivity Determination of CuO₂ active planes (Zn doping tomography)

> G. Logvenov, Science 326, 699 (2009) F. Baiutti et al., Nature Communications (2015)

Multiferroicity by design

Ferrimagnetic T<240K

Magnetic order up to 281K (1/9) Ferroelectric up to > 700K + magnetoelectric coupling @200K

2 nm

PFM

XMCD PEEM

Outline

- The choice of MBE
- Specificities related to oxide-MBE

Oxidizing gas Stœchiometry / RHEED

- Examples of ALL-MBE grown oxide systems
- The ozone-MBE system @IJL
- Towards multiferroicity in RE Vanadates superlattices

Ozone-MBE instrument @ IJL

Ozone Delivery system

Ozone generation from O₂ Distillation (LN₂) Storage in silica gel Injection into the growth chamber Regulation by pressure/valve control

 O_3/O_2 at the sample ?

D.G. Schlom, PhD (1990)

Rare Earth Vanadates

Oxygen octahedra rotation Cations displacements Jahn-Teller distortion

Multiferroicity by design in REVO₃ superlattices

INSTITUT JEAN LAMOUR

Epitaxial growth of REVO₃ films and superlattices

Epitaxial growth [LaVO₃/PrVO₃] superlattices

[210] 1 [110] [100] STO-TiO₂ 1,1 111 SL Intensité (unit. arb.) LVO LVO PVO 20 30 ò 10 40 Temps (min)

 $[(LVO)_{7}/(PVO)_{5}]_{18}$

Equal La, Pr and V fluxes $\approx 1.5 \ 10^{13} \ at/cm^2/s$ $T_{Substrat} = 850^{\circ}C$ $P_{O_3} = 7.10^{-7} \ mbar$

Epitaxy with possible variants Growth by pseudo cubic unit cell RVO_3 Oxide growth rate $v_{ox} = Flux_{tot}/\rho$ 2D growth on STO, DSO and LSAT

Structural analysis - XRD

Chemical analysis - EELS

[(LVO)₅/(PVO)₉]₁₆

Abrupt interfaces (1 uc max)

Collab. Matthieu BUGNET (MATEIS)

Cations displacements

Conclusion

Ultimate control of elementary sources by ozone-MBE Ultimate design at the atomic plane level

order, confinement, dimensionality, proximity... new functionalities

 $[(LVO)_1 / (PVO)_1]_{110}$

